Get power limit and mode

A command to get the power limit and the power mode is:
get_user_power_limit. A response to this command is JSON with following fields:
e powerMode - a case sensitive string which describes the device
performance mode. Possible values:
o Low;
o Normal;
o High.
e powerLimit - an integer which stands for a user power limit (not the
value from overclock tab).

Set power limit and mode

A command to set the power limit and the mode is: set_user_power_limit.
This command must include a payload. Example:
{"softRestart":true, "powerMode": 1,"powerLimit":1000}.
Fields are:
e powerMode - a case insensitive string or integer which describes a
performance mode of the device. Possible values:
o Low;
o Normal;
o High.
e powerLimit - an integer which stands for a user power limit (not the
value from overclock tab).
e softRestart - a boolean which describes whether the device must try to
set overclock parameters without stopping a mining'. Possible values:
o true - try to set parameters without stopping a mining.
o false - do not try to set parameters without stopping a mining.
The response to this command is APl command status.

Get fan mode and manual mode speed

A command to get the fan mode and the manual mode speed is:
get_fan_mode. A response to this command is JSON with following fields:
e fan_mode - a string which describes the device fan mode. Possible values:

" The device can fail to do so. In such a case mining will be stopped even if the soft_restart is set to
true.



o auto - the device will select fan speed based on its current state.
o manual - the device will always use the selected fan speed.
e manual_fan_speed_percent - an integer (percents) which describes the speed
of fans. This field is taken into account only if fan_mode is manual. Minimum
value is 10 and maximum is 100.

Set fan mode and manual mode speed

A command to set the fan mode and the manual mode speed is:
set_fan_mode. This command must include a payload. Example:
{"fan_mode":"auto","manual_fan_speed_percent":"93"}.

Fields are:

e fan_mode - a case sensitive string which describes the device fan
mode. Possible values:
o auto - the device will select fan speed based on its current state.
o manual - the device will always use the selected fan speed.
e manual_fan_speed _percent - an integer(percents) which describes
speed of fans on startup. This field is taken into account only if
fan_mode is Manual. Minimum value is 10 and maximum is 100.

e The response to this command is APl command status.

Get overclock info

A command to get the overclock info is: get_overclock_info. A response to
this command is JSON with all overclock info.

The meaning of the most useful fields can be looked up in the overclock info
json section of the appendix.

Set overclock info

A command to set the overclock info is: set_overclock_info. This command
must include a payload. Example: {"board_temp_target":74, "freq_target":430,
"power_limit":3850, "voltage target":1420, "power_max":3950, "voltage limit":1470,
"voltage_min":1300, "soft_restart":true}.

The meaning of the most useful fields can be looked up in the overclock info
json section of the appendix.

The response to this command is APl command status.



Delete overclock info

A command to delete the overclock info is: delete_overclock_info.
The response to this command is APl command status.

Get board slots state

A command to get the board slots states is: get_board_slots_state. A
response to this command is JSON with following field:

e auto_disable - a boolean value which describes whether to reboot the device
on any board error in an attempt to recover it, or disable the board if recovery
limit exceeded and 54x ("Chip id read error") persists.

e failed to_power on_hashboard reboots - an integer value which describes
how many reboots were performed in an attempt to repair boards.

e failed to_power_on_hashboard _max_reboots - an integer value which
describes a limit of the recovery reboots.

e |imit_boards_power - a boolean value which describes whether to use power
from disabled or not working boards. Possible value:

o true - do not use power from disabled or not working boards. The
device will limit power of each board to the power it would get if the
factory number of boards would be working and each board would get
an equal share of the power.

o false - use power from disabled or not working boards. The rest of the
boards will get more power.

e enabled - an array of booleans. Each value describes the state of the
corresponding board slot.

e auto_disabled - an array of JSON objects. One object per disabled board.
Each object describes the reason and time of disabling a board. Array indexes
correspond to board indexes. Fields are:

o reason - an integer field which describes error code which is a reason
the board is disabled.

o time - an integer value which describes a time when the board was
disabled. The format is Unix timestamp.

Set board slots state

A command to set the board slots states is: set_board_slots_state. This
command must include a payload. Example: {"auto_disable":true,
"failed_to _power _on_hashboard _reboots":0,
"failed_to_power _on_hashboard _max_reboots":5, "limit_boards_power": false,
"enabled":[true, true, true, false]}.



Field is:

e auto disable - a boolean value which describes whether to reboot the
device on any board error in an attempt to recover it, or disable the
board if recovery limit exceeded and 54x ("Chip id read error") persists.

e failed to_power _on_hashboard reboots - an integer value which
describes how many reboots were performed in an attempt to repair
boards.

e failed _to_power_on_hashboard _max_reboots - an integer value which
describes a limit of the recovery reboots.

e |imit_boards_power - a boolean value which describes whether to use
power from disabled or not working boards. Possible value:

o true - do not use power from disabled or not working boards.
The device will limit power of each board to the power it would
get if the factory number of boards would be working and each
board would get an equal share of the power.

o false - use power from disabled or not working boards. The rest
of the boards will get more power.

e enabled - an array of booleans. Each value describes the state of the
corresponding board slot. The field is optional. If the array is empty it
will enable all boards. Thus "enabled":[] is the same as "enabled”:[true,
true, true, true].

Reset recovery reboot counter

A command to reset the recovery reboot counter is:
reset_failed_to_power_on_hashboard_reboots.
The response to this command is APl command status.

Get firmware version

A command to get the overclock info is: get_firmware_version. A response
to this command is JSON with following fields:
e custom_version - a string which describes the device custom version.
e firmware_version - a string which describes the device firmware version.

Set boards cool fan percent

A command to set pwm% of the fans on cool down (Startup Cooling Fan
Speed %) is: set_boards_cool_fan_percent. This command must include a
payload. Example: {"boards_cool_fan_percent":"30"}.




Field is:
e boards_cool_fan_percent - a string representing integer value which
describes how much PWM to set on cool down. Minimum value is 10
and maximum is 100.
The response to this command is APl command status.

Power status

A command to get whether a device is suspended or deep_suspended is:
power_status. A response to this command is JSON with following fields:
e suspend - a string which describes whether the device is suspended. Possible
values:
o true - string which means that device is suspended.
o false - string which means that device is not suspended.
e deep_suspend? - a string which describes whether the device is
deep_suspended. Possible values:
o true - string which means that device is deep_suspended.
o false - string which means that device is not deep_suspended.

Deep power off

A command to suspend the mining is: deep_power_off. An effect of this
command will hold after reboot.
The response to this command is APl command status.

Deep power on

A command to resume the mining after deep_power_off command is:
deep_power_on.
The response to this command is APl command status.

Delete upfreq result

A command to delete autotune (upfreq) results is: delete_upfreq_results.
The response to this command is APl command status.

2 Deep suspend is a simple suspend but it holds after reboot.



Get cool temp

A command to get a temperature to which the device will cool down is:
get_cool_temp. A response to this command is JSON with following fields:
e type - a string field which describes what cooling temperature will use the
device. Possible values:
o default - use the default cooling temperature of the device.
o env_temp - use an environment temperature.
o manual - use the manual_temp field value.
e manual_temp - an integer field which describes a temperature to which the
device will cool down.

Set cool temp

A command to set a temperature to which the device will cool down is:
set_cool_temp. This command must include a payload. Example: {"type":"manual”,
"manual_temp":35}.

Fields are:

e type - a string field which describes what cooling temperature will use
the device. Possible values:

o default - use the default cooling temperature of the device.
o env_temp - use an environment temperature.
o manual - use the manual_temp field value.

e manual_temp - an integer field which describes a temperature to which
the device will cool down. Note that this value must be passed even if
the type is not manual.

The response to this command is APl command status.

Get environment temperature limit

A command to get an environment temperature limit is: get_env_temp_limit.
A response to this command is JSON with following fields:

e enabled - a boolean value which describes whether the device must resume
or suspend its work when resume_env_temp or suspend_env_temp are
respectively reached.

e resume_env_temp - a string which describes an environment temperature
when the device will start mining, if it was suspended due to too high
environment temperature.

e suspend_env_temp - a string which describes an environment temperature
when the device will stop mining.



Set environment temperature limit

A command to set environment temperature suspend and resume
temperatures is: set_env_temp_limit. This command must include a payload.
Example: {"enabled": "true”, "resume_env_temp": "50", "suspend_env_temp": "65"}.

Fields are:

e enabled - a boolean value which describes whether the device must
resume or suspend its work when resume_env_temp or
suspend_env_temp are respectively reached.

e resume_env_temp - a string which describes an environment
temperature when the device will start mining, if it was suspended due
to too high environment temperature.

e suspend_env_temp - a string which describes an environment
temperature when the device will stop mining.

Note that resume_env_temp must not be greater or equal to
suspend_env_temp. The response to this command is APl command status.

Install AMS

A command to install the AMS is: ams_install. This command must include a
payload. Example: {"api_key":"517ab56aa-a252-4a7a-9978-a76089%aa2aba",
"update_interval": 10}.

Field is:

api_key - a string which is the AMS API key.

update_interval - an integer value which describes an interval
(seconds) between send of the device data to the AMS server.
The default value is 5. The value is optional, if no interval
specified the 5 seconds will be applied.

The response to this command is APl command status.

Uninstall AMS

A command to uninstall the AMS is: ams_uninstall.
The response to this command is APl command status.

Get AMS API key

A command to get the AMS API key is: get_ams_install_data. A response to
this command is JSON with following fields:



e api_key - string which represents the AMS APlkey if any.
e installed - string which describes whether the AMS is installed.
Possible values:
o true - string which means that AMS is installed. The api_key
field will return the AMS API key.
o false - string which means that AMS is not installed. The api_key
field will be an empty string.

Get upfreq save params

A command to get an upfreq save params is: get_upfreq_save_params. To

get an explanation of the upfreq restore algorithm read a dedicated appendix 2. A
response to this command is JSON with following fields:

freq_delay_air - a string which describes a delay between iterations of
changing of freq for an air cooling device. The smaller the delay the faster the
tuning.

freq_delay _liquid - a string which describes a delay between iterations of
changing of the freq for a liquid cooling device. The smaller the delay the
faster the tuning.

freq_delay air_default - a string which describes the default value of
freq_delay _air.

freq_delay_liquid_default - a string which describes the default value of
freq_delay_liquid.

voltage_offset_air - a string which describes a voltage change (mV) for an air
cooling device. The value can be negative to down a voltage.

voltage offset _liquid - a string which describes a voltage change (mV) for a
liquid cooling device. The value can be negative to down a voltage.

voltage offset_air_default - a string which describes the default value of
voltage offset_air.

voltage_offset _liquid_default - a string which describes the default value of
voltage_offset _liquid.

decrease_voltage power _limit_tolerance_percent - a string which describes a
value for which the limit can be exceeded by upfreq restore. When the upfreq
restore is starting the first thing to do is to raise the frequency. After this the
device will wait for stabilisation of temperature. This limit applies at this
moment for voltage and power.
decrease_voltage power _limit_tolerance percent default - a string which
describes the default value of
decrease_voltage power _limit_tolerance_percent.

power _limit_tolerance_percent - a string which describes a value for which
the power limit can be exceeded on upfreq restore.



e power_limit_tolerance_percent_default - a string which describes the default
value of power _limit_tolerance percent.

e jin_limit_tolerance_percent - a string which describes a value for which the inn
limit can be exceeded on upfreq restore.

e jin_limit_tolerance_percent default - a string which describes the default
value of iin_limit_tolerance_percent.

e Jjout_limit_tolerance percent - a string which describes a value for which the
iout limit can be exceeded on upfreq restore.

e Jjout_limit_tolerance_percent _default - a string which describes the default
value of jout_limit_tolerance _percent.

Set upfreq save params

A command to set an upfreq save params is: set_upfreq_save_params. To
get an explanation of the upfreq restore algorithm read a dedicated appendix 2. This
command must include a payload. Example:

{"freq_delay air":"2.337","freq_delay _liquid":"2.322","voltage offset_air":"-

22" "voltage offset liquid":"0","decrease_voltage power _limit_tolerance percent":"1
.30","power _limit_tolerance_percent": "2.6", "iin_limit_tolerance_percent":
"2.4","iout_limit_tolerance_percent": "2.65"}.

Fields are:

e freq_delay air - a string which describes a delay between iterations of
changing of freq for an air cooling device. The smaller the delay the
faster the tuning.

e freq_delay liquid - a string which describes a delay between iterations
of changing of frequency for a liquid cooling device. The smaller the
delay the faster the tuning.

e voltage offset air - a string which describes a voltage change (mV) for
an air cooling device. The value can be negative to down a voltage.

e voltage offset liquid - a string which describes a voltage change (mV)
for a liquid cooling device. The value can be negative to down a
voltage.

e decrease_voltage power_limit_tolerance_percent - a string which
describes a value for which the limit can be exceeded on the decrease
of the voltage and power on upfreq restore.

e power_limit_tolerance _percent - a string which describes a value for
which the power limit can be exceeded on upfreq restore.

e jin_limit_tolerance_percent - a string which describes a value for which
the inn limit can be exceeded on upfreq restore.



e Jjout_limit_tolerance_percent - a string which describes a value for
which the iout limit can be exceeded on upfreq restore.

The response to this command is APl command status.

Start profiles generation

A command to start profiles generation is: generate_profiles.
The response to this command is APl command status.

Stop profiles generation

A command to stop profiles generation is: stop_profiles_generation.
The response to this command is APl command status.

Get profiles generation status

A command to get the profiles generation status is:
get_profiles_generation_status. A response to this command is JSON with
following fields:

e generating_profiles - a string which describes whether profile
generation is currently underway. Possible values:
o '"true" - generation is underway.
o ‘"false" - generation is not underway.
e has_generated profiles - a string which describes whether the device
has generated profiles. Possible values:
o '"true" - the device has generated profiles.
o '"false" - the device has not generated profiles.

Delete generated profiles

A command to stop profiles generation is: delete_generated_profiles.
The response to this command is APl command status.



Get Profile Switcher

A command to get the profiles switcher settings is: get_profile_switcher. A
response to this command is JSON with following fields:
e enabled - a string which describes whether profile generation is
currently underway. Possible values:
o "true" - generation is underway.
o "false" - generation is not underway.
e Jower_temp - a string which describes the temperature celsius upon
reaching which the device will select a lower profile.
e raise_temp - a string which describes the temperature celsius upon
reaching which the device will select a higher profile.
e max_profile_id - a string which describes an ID of profile which is the
highest profile that could be set by the switcher system.
e ignore_pwm - an integer field which describes whether the switcher will
ignore current PWM when increasing profile. Possible values:
o true - ignore PWM when increasing profile.
o false - do not increase profile if PWM is >= 90%.
e profiles - a JSON array which contains JSON objects. Each object
contains data about profiles. It has following fields:
o id - an integer field which contains profile id. The one which
could be set to max_profile_id.
o name - a string field which contains the profile name.

Set Profile Switcher

A command to set the profiles switcher settings is: set_profile_switcher. This
command must include a payload. Example:
{"enabled":"true","lower_temp":"100","raise_temp":"90","ignore_pwm":"false","max_p
rofile_id":"1000000"}.

Fields are:

e enabled - a string which describes whether profile generation is
currently underway. Possible values:
o '"true" - generation is underway.
o '"false" - generation is not underway.
e Jower_temp - a string which describes the temperature celsius upon
reaching which the device will select a lower profile.
e raise_temp - a string which describes the temperature celsius upon
reaching which the device will select a higher profile.
e max_profile_id - a string which describes an ID of profile which is the
highest profile that could be set by the switcher system.



e ignore_pwm - an integer field which describes whether the switcher will
ignore current PWM when increasing profile. Possible values:
o true - ignore PWM when increasing profile.
o false - do not increase profile if PWM is >= 90%.
Note that lower _temp must be greater than raise_temp. The profile switcher
can work only with generated profiles. The response to this command is API
command status.

Get stats

A command to get an api stats info is: stats. A response to this command is a
JSON array which contains JSON objects. Each object contains data on the
corresponding chain.

Check upfreq results

A command to see whether upfreq results exist is: has_upfreq_results. A response
to this command is JSON with following fields:
e has_upfreq_results - a string which describes whether upfreq results
exist.

Enable/disable power fan

A command to enable or disable the power fan is: set_psu_fan. This
command must include a payload. Example: set_psu_fan {"enabled”: "true"}.
Fields are:
e enabled - string which describes whether the psu fan must be enabled
or disabled. Possible values:
o '"true" - enable psu fan.
o "false" - disable psu fan.

The response to this command is APl command status.

Get liquid cooling

A command to get whether the device is in the liquid cooling mode is:
get_liquid_cooling. A response to this command is JSON with following fields:



e liquid_cooling - string which describes whether the device is in liquid
cooling mode or not. Possible values:
o ‘"true" - the device is in liquid cooling mode.
o "false" - the device is not in liquid cooling mode.
e s _fan_machine - string which describes whether the device is a fan
cooling device. Possible values:
o '"frue" - the device is a fan cooling device.
o '"false" - the device is not a fan cooling device.
e cool_mode - string which describes the cooling mode of the device.
Possible values:
o "air" - the mode for devices which are cooled by fans.
o '"liquid" - the mode for devices which are cooled by immersion,
but is not factory made for this.
o "hydro" - the mode for devices which are cooled by a liquid
cooling system.
o ‘"immersion" - the mode for devices which are factory made to be
cooled by immersion.

Set liquid cooling

A command to set the cooling mode is: set_liquid_cooling. This command
must include a payload. Example: set_liquid _cooling {"liquid_cooling": "true"}.
Fields are:
e liquid_cooling - string which describes whether the device is in liquid
cooling mode or not. Possible values:
o ‘"true" - the device is in liquid cooling mode.
o "false" - the device is not in liquid cooling mode.
The response to this command is APl command status.

Get lower profile if autotune failed policy

A command to see whether the device will lower profile if autotune fails is:
get_lower_profile_if _autotune_failed. A response to this command is JSON with
following fields:

e enabled - string which describes whether the device will lower profile if
autotune fails. Possible values:
o '"true" - the device will lower profile if autotune fails.
o ‘"false" - the device will not lower profile if autotune fails.



Set lower profile if autotune failed policy

A command to set whether the device will lower profile if autotune fails is:
set_lower_profile_if_autotune_failed. This command must include a payload.
Example: set_lower profile_if _autotune_failed {"enabled": "true"}.

Fields are:

e enabled - string which describes whether the device will lower profile if
autotune fails. Possible values:
o ‘"true" - the device will lower profile if autotune fails.
o ‘"false” - the device will not lower profile if autotune fails.

The response to this command is APl command status.

Get additional PSU status

A command to see whether the device has an additional PSU enabled is:
get_additional_psu. A response to this command is JSON with following fields:
e enabled - string which describes whether the device has an additional
PSU enabled. Possible values:
o "true" - the device has an additional PSU enabled.
o "false" - the device does not have an additional PSU enabled.

Set additional PSU status

A command to set whether the device has an additional PSU enabled is:
set_additional_psu. This command must include a payload. Example:
set_additional_psu {"enabled": "true"}.

Fields are:

e enabled - string which describes whether the device has an additional
PSU enabled. Possible values:
o "true" - the device has an additional PSU enabled.
o "false" - the device does not have an additional PSU enabled.

The response to this command is APl command status.

Upgrade PSU firmware

A command to upgrade PSU firmware is: upgrade_psu_firmware. Example:
upgrade _psu_firmware.



The response to this command is APl command status.

Get list of allowed pools

A command to get a list of pools which are allowed to work with is:
get_allowed_pools. A response to this command is JSON with following fields:
e pools - a JSON array which contains up to 10 strings. Each string
contains a URL of the pool which is allowed to work with or empty.

Set list of allowed pools

A command to set a list of pools which are allowed to work with is:
set_allowed_pools. This command must include a payload. Example:
set_allowed_pools {"pools":["stratum+tcp.//fexample.com:3333",
"stratum+tcp.//example.com:443"]}.

Fields are:

e pools - a JSON array which can contain up to 10 strings. Each string
must be a single url of the pool which is allowed to work with. Leave
empty to remove a pool at the index.

The response to this command is APl command status.

Get stratum off

A command to get whether the stratum off is enabled is: get_stratum_off. A
response to this command is JSON with following fields:
e enabled - string which describes whether the stratum off is enabled.
Possible values:
o '"true" - the stratum off is enabled.
o '"false" - the stratum off is disabled.
e stratum_off server - string which describes the stratum off server. That
is IP plus port. Example: 192.168.1.1:99909.
stratum_off_user - a string which describes the stratum off user name.
stratum_off pass - a string which describes the stratum off password.



Set stratum off

A command to set the stratum off is: set_stratum_off. This command must include
a payload. Example: set_stratum_off
{"enabled":true, "stratum_off server":"192.168.1.1:9999" "stratum_off user":"stratum
off.user”,"stratum_off _pass":"123"}.
Fields are:
e enabled - string which describes whether the stratum off is enabled.
Possible values:
o ‘"true" - the stratum off is enabled.
o ‘"false" - the stratum off is disabled.
e stratum_off server - string which describes the stratum off server. That
is IP plus port. Example: 192.168.1.1:9999.
stratum_off_user - a string which describes the stratum off user name.
stratum_off pass - a string which describes the stratum off password.

The response to this command is APl command status.

Get proxy info

A command to get the proxy info is: get_proxy_info. A response to this
command is JSON with following fields:
e enabled - string which describes whether the traffic is routed through
proxy. Possible values:
o '"true" - the traffic is routed through proxy.
o ‘"false” - the traffic is not routed through proxy.
e host - string which describes a proxy address.
e user - string which describes a proxy username.
e password - string which describes a proxy password.

Set proxy info

A command to set the proxy info is: set_proxy_info. This command must include a
payload. Example: set_proxy_info {"enabled":"true","host"."192.168.1.1:9999",
"user": "proxy_user”, "password": "proxy_password"}.
Fields are:
e enabled - string which describes whether the traffic is routed through
proxy. Possible values:
o '"true" - the traffic is routed through proxy.
o ‘"false” - the traffic is not routed through proxy.
e host - string which describes a proxy address. It must be in format
ip:host. For example: 192.168.1.1:9999.



e user - string which describes a proxy username.
e password - string which describes a proxy password.

The response to this command is APl command status.

Get compute info

A command to get the compute info is: get_compute_info. A response to this
command is JSON with following fields:
e wmt port - string which describes a port for Whatsminer Tool
connection. Default value: 8889.

Set compute info

A command to set the compute info is: set_compute_info. This command must
include a payload. Example: set compute_info {"wmt_port":"8888"}.
Fields are:
e wmt port - string which describes a port for Whatsminer Tool
connection. Default value: 8889.

This command will take effect only after reboot. However, the wmt_port value
will change immediately. The response to this command is APl command status.

Get generate profiles parameters
(get_generate_ profiles params)

A command to get the parameters of the profiles generation is:
get_generate_profiles_params. A response to this command is JSON with
following fields:

e power_limit_air - string which describes a limit for power in air cooling
mode.

e power_limit_liquid - string which describes a limit for power in liquid
cooling mode.

e power_limit_hydro - string which describes a limit for power for hydro
devices.

e power_limit_immersion - string which describes a limit for power for
immersion devices.

e freq_step - string which describes an amount for which a frequency is
adjusted per step.



power _limit_air_default - string which describes a default limit for
power in air cooling mode.

power _limit_liquid_default - string which describes a default limit for
power in liquid cooling mode.

power_limit_hydro_default - string which describes a default limit for
power for hydro devices.

power_limit_immersion_default - string which describes a default limit
for power for immersion devices.

freq_step_default - string which describes a default amount for which a
frequency is adjusted per step.

Set generate profiles parameters
(set_generate profiles_params)

A command to set the parameters of the profiles generation is:
set_generate_profiles_params. This command must include a payload. Example:
set_generate profiles _params
{"power _limit_air":"3950","power _limit_liquid":"3950", "power _limit_hydro":"10000","p
ower_limit_immersion":"9000","freq_step":"2.500000"}.

Fields are:

power_limit_air - string which describes a limit for power in air cooling
mode.

power _limit_liquid - string which describes a limit for power in liquid
cooling mode.

power _limit_hydro - string which describes a limit for power for hydro
devices.

power _limit_immersion - string which describes a limit for power for
immersion devices.

freq_step - string which describes an amount for which a frequency is
adjusted per step.

The response to this command is APl command status.

Get advanced fan mode
(get_advanced_fan_mode)

A command to get the advanced settings of the fans is:
get_advanced_fan_mode. A response to this command is JSON with following

fields:



e use_chip_temp - a string which describes which temp the cooling

system will use for its work. Possible values:
o “true” - use chip temp when adjusting fans speed.
o “false” - use board temp when adjusting fans speed.

e use custom fan_algo - a string which describes whether to use the
custom fan algorithms. That is an algorithm which utilises a PID
controller mechanism. Possible values:

o “true” - use a custom fan algorithm.
o “false” - use standard fan algorithm.

e use_custom _fan_algo_suspend - a string which describes whether to
use the custom fan algorithms while suspend mode. That is an
algorithm which utilises a PID controller mechanism. Possible values:

o “true” - use a custom fan algorithm.
o “false” - use standard fan algorithm.

e chip_temp_protect default - a string which describes a maximum chip
temperature. Usually the default value is 120°C.

e chip_temp_target default - a string which describes a target chip temp.
By default this value is 5°C less than chip_temp_protect default.

e adjust_chip_temp - a string which describes an offset value which is
added to the max chips temp. The device will try to keep max chip
temp close to the chip_temp_target default + adjust_chip_temp. This
value is respected only if use _chip_temp is true. This offset must be
less or equal to O.

e adjust _board temp - a string which describes an offset value which is
added to the max board temp.The device will try to keep max board
temp close to the Board Target Temp + adjust_board_temp. This value
is respected only if use_chip_temp is false. This offset must be less or
equal to 0.

e use target temp_ramp - a string which describes if use temp ramp on
exit from suspend mode. Possible values:

o “true” - use.
o “false” - don’t use.

e ramp_adjust target temp - a string which describes an offset value
which is added to the current target temp on exit from suspend mode,
working only if use_target temp_ramp is “true”. This value must be in
the range from -30.0 to 30.0.

e ramp_target temp_speed - a string which describes how fast the target
temp rises after suspend mode, working only if use_target temp_ramp
is “true”. This value is measured in degrees per second and must be in
the range from 0.01 to 100.0.

Those settings do not survive reboot.



Set advanced fan mode
(set_advanced fan_mode)

A command to set the advanced settings of the fans is:
set_advanced_fan_mode. This command must include a payload. Example:

" "

{"use_chip_temp":"false”,"use_custom fan_algo suspend":"false","use custom fan

mn.n

_algo":"false","adjust_chip_temp":"0.000000","adjust_board temp":
0.000000","use_target_temp_ramp":"false","ramp_adjust_target _temp":"2","ramp_tar
get_temp_speed":"0.15"}.

Fields are:

e use_chip_temp - a string which describes which temp the cooling
system will use for its work. Possible values:

o “true” - use chip temp when adjusting fans speed.
o “false” - use board temp when adjusting fans speed.

e use custom fan_algo suspend - a string which describes whether to
use the custom fan algorithms while suspend mode. That is an
algorithm which utilises a PID controller mechanism. Possible values:

o “true” - use a custom fan algorithm.
o “false” - use standard fan algorithm.

e use _custom fan_algo - a string which describes whether to use the
custom fan algorithms. That is an algorithm which utilises a PID
controller mechanism. Possible values:

o “true” - use a custom fan algorithm.
o “false” - use standard fan algorithm.

e adjust_chip_temp - a string which describes an offset value which is
added to the max chips temp. The device will try to keep max chip
temp close to the chip_temp_target default + adjust_chip_temp. This
value is respected only if use _chip_temp is true. This offset must be
less or equal to O.

e adjust _board temp - a string which describes an offset value which is
added to the max board temp.The device will try to keep max board
temp close to the Board Target Temp + adjust_board _temp. This value
is respected only if use_chip_temp is false. This offset must be less or
equal to 0.

e use _target temp_ramp - a string which describes if use temp ramp on
exit from suspend mode. Possible values:

o “true” - use.
o “false” - don’t use.

e ramp_adjust target temp - a string which describes an offset value
which is added to the current target temp on exit from suspend mode,
working only if use_target temp_ramp is “true”. This value must be in
the range from -30.0 to 30.0.



ramp_target _temp_speed - a string which describes how fast the target
temp rises after suspend mode, working only if use_target _temp_ramp
is “true”. This value is measured in degrees per second and must be in
the range from 0.01 to 100.0.

The response to this command is APl command status. Those settings do not
survive reboot.

Summary (summary)

A command to get the summary is summary. That is the factory command.
However it has additional fields. Those fields are:

Power Realtime - an integer field which describes a current power.
Miner Memory Usage - an integer which describes an amount of
memory used by the firmware. Unit: MB.

Miner PID - an integer which describes the current PID of the firmware.
PSU Serial No - a string field which describes a PSU serial number.
PSU Name - a string field which describes a PSU model.

PSU Vin0 - a floating point field which describes an input voltage for
1st phase.

PSU Vin1 - a floating point field which describes an input voltage for
2nd phase. It is zero when supply is one-phase.

PSU VinZ2 - a floating point field which describes an input voltage for
3rd phase. It is zero when supply is one-phase.

PSU Vout - a floating point field which describes an output voltage.
PSU lout - a floating point field which describes an output current.
PSU lin0 - a floating point field which describes an input current for the
1st phase.

PSU lin1 - a floating point field which describes an input current for the
2nd phase. It is zero when supply is one-phase.

PSU lin2 - a floating point field which describes an input current for the
3rd phase. It is zero when supply is one-phase.

Chip Temp Protect - an integer value which describes a limit
temperature for chips.

Chip Temp Target - an integer value which describes a target
temperature for chips.

PSU TempO - a floating point field which describes a PSU temperature
from the 1st sensor.

PSU Temp1 - a floating point field which describes a PSU temperature
from the 2nd sensor.

PSU Temp2 - a floating point field which describes a PSU temperature
from the 3rd sensor.



e PSU Fan Speed - an integer field which describes a speed of the PSU

fan.

e Status - a string field which describes the current status of the device.
Possible states:

O

o O O O

Suspended: High Env. Temp - the device is suspended due to
too high environment temperature.

Suspended - the device is suspended.

Generating Profiles - the device is generating profiles.
Restoring - the device sets a profile from saved results.
Tuning - the device is tuning a profile.

Miner Type - a string field which describes a model of the
device.

e factory GHS - an integer field which describes a hashrate of the device
with the factory settings. Unit: GH/s.

Reset MAC address (reset_mac)

A command to set the MAC address to a new value is: reset_mac. This
command does not require a payload. In such a case the MAC address will be
generated automatically. However, an optional argument mac is accepted. Example:
{"mac":"C8:11:05:00:53:3A"}.

Fields are:

e mac - a string which describes a MAC address to set.

The response to this command is APl command status.



Changelog

2.0.2

Add commands get _debug_options and set_debug_options.

2.0.3

Fix a bug with a cutted down response of devs command on devices with a huge number
of chips.



Appendix 1

Overclock info JSON

This JSON contains all overclock info. Among others, this JSON will include
following fields:
1. board_temp target - an integer which describes boards target temperature of
the device.
2. freq_target - an integer which describes a target frequency of the device.
3. power_limit - an integer which describes a power limit of the device. This
value must be less than powerMax.
4. voltage_target - an integer which describes a target voltage of the device.
This value must be less than voltageLimit and greater than voltageMin.
5. power_max - an integer which describes a max power of the device. This
value must be greater than powerLimit.
6. voltage limit - an integer which describes a voltage limit (maximum voltage) of
the device. This value must be greater than VoltageMin and voltageTarget.
7. voltage_min - an integer which describes a minimum voltage of the device.
This value must be less than voltageLimit and voltageTarget
8. soft restart - a boolean which describes whether the device must try to set
overclock parameters without stopping a mining®. This field can be passed to
set commands, but it is never returned by get commands. Possible values:
a. true - try to set parameters without stopping a mining.
b. false - do not try to set parameters without stopping a mining.
The preconditions for the sorf_restart to work is:
1. The current status of a device must be Mining.
2. There must be an upfreq result for the profile which is set by the
command.
3. The feature works only for the enterprise version of the firmware.

Note that when this data is returned by the get _overclock_info command not
all of those fields are on the same level. Some fields would be available under the
fields field. Those fields are: board _temp_target, freq_target, power_limit,
voltage_target, power_max, voltage_limit, voltage _min, soft_restart. Also, those
fields will be JSON objects. Each object will contain following fields:

min - a minimum value for the field.

current - a current value of the field.

default - a default value for the field.

max - a maximum value for the field.

3 The device can fail to do so. In such a case mining will be stopped even if the soft restart is set to
true.



APl command status

That are responses to commands which by their nature do not explicitly require any
response. The response simply shows whether a particular command succeeded or
not. Not exhaustive list of examples:
e Successful completion of a command:
o {"STATUS":"S","When":1723807869,"Code":131,"Msg"+:"API
command OK","Description”:""}
e Unsuccessful completion of command:
o {"STATUS":"E","When":1723808069,"Code":132,"Msg":"API
command ERROR","Description":""}

Note that both above mentioned responses mean that the specified command
does exist. When a command is unknown to the device it responds with the following
message:

o {"STATUS":"E","When":1723810620,"Code":14,"Msg":"invalid
cmd”,"Description”:""}

4 The "Msg" field can contain data which is a response of the command.



Appendix 2

Upfreq restore algorithm

Upfreq restore procedure consists of 4 steps.

On the first step the device sets a voltage. The voltage to be set is selected by
the device based on current environment temperature. Then the voltage offset air
or voltage_offset_liquid is added to the voltage value. That is the final value which
will be set.

On the second step the device raises frequency. It is done by a number of
small frequency changes to make the process more safe. The delay between each
step could be set via freq_delay air and freq_delay_liquid fields of the
set_upfreq_save_params command.

On the third step the device waits for a temperature to become stable.

On the fourth step the device starts a fine tuning of the voltage. It selects a
voltage which provides the closest hashrate to the specified.



